NIST logo
*

Electromagnetic Measurements

Pulse Waveform Measurements

Rate our Services

Technical Contacts:
Thomas Nelson
Tel: 301-975-2986 (office)
Tel: 301-975-2000 X72416 (lab)
Fax: 301-926-3972
E-mail: thomas.nelson@nist.gov

Administration and Logistics
Denise D. Prather
Tel: 301-975-4221
E-mail: denise.prather@nist.gov

Please contact the administration and logistics staff before shipping instruments or standards to the address listed below.

Mailing Address for 65250S, 65500S and 65501S:
National Institute of Standards and Technology
100 Bureau Drive, Stop 8170
Gaithersburg, MD 20899-8170

Service ID
Number
Description of Services Fee ($)
65250S Repetitive Pulse Waveform Measurements, Including Settling Parameters At Cost
65500S Peak-to-Peak Detector Calibration at One Frequency Selected from Those Given in Table 9.23 at 1.2 V At Cost
65501S Additional Frequency for Peak-to-Peak Detector in 65500S At Cost
Fees are subject to change without notice.

back to top of page | back to index of electromagnetic measurements

Repetitive Pulse Waveform Measurements, Including Settling Parameters (65250S)

NIST offers a special-test service for measurement of repetitive pulse waveforms whose major frequency components are below 1 GHz. Waveform measurement data can be provided on diskette, along with a report of measurement uncertainties as a function of the duration from the mesial (50 %) point of the pulse transition. When required, certain derived waveform parameters can also be provided. For step-like waveforms, these include waveform settling errors, with respect to a defined reference level. For impulse-like waveforms, pulse energy into an ideal 50 Ω load can be provided. The waveforms are measured with the NIST Sampling Comparator System described above. Waveforms within ± 2 V into 50 Ω can be accommodated directly. Higher amplitudes require the use of external attenuators. Both 50 Ω and 2 kΩ attenuators are available for amplitudes up to 20 V peak; however, the 2 kΩ attenuator substantially reduces the bandwidth of the measurement system. Typical measurement epochs range from 10 ns to 1 µs, and record lengths range from 1000 to 4000 samples.Representative uncertainties for settling parameter measurements are listed in Table 9.22.

back to top of page | back to index of electromagnetic measurements

Representative uncertainties for settling parameter measurements are listed in Table 9.22.

Table 9.22 Uncertainty for Measurement of Repetitive Pulse Settling Parameters

Pulse Amplitude
(V)
Duration from Mesial Point
(ns)
Typical Expanded Uncertainty
(% of pulse amplitude)
0.25 1 1.0
  2 0.3
  5 0.1
  10 0.1
  100 0.05
  1000 0.02
0.5 to 2.0 1 0.5
  2 0.2
  4 0.1
  5 0.06
  6 0.05
  8 0.03
  10 0.02
  20 0.02
  50 0.02
  100 0.01
  1000 0.01

Restrictions and Notes:

1. All measurements are performed with a 50Ω input impedance. The input connector is a female SMA type. The sampling probe is connected directly to the output connector of the waveform source; no intervening cables are used unless they are specifically provided for this purpose by the customer.

2. The settling error at time t (measured from the mesial point) is defined as the largest absolute difference between the waveform and the reference level occurring in the interval from time t to the end of the data record.

3. Unless otherwise requested, the reference level is the final dc or steady state value of the final level. This level is measured by inputting a steady state logic level to the generator under test corresponding to the final level.

4. Short term settling can also be measured with respect to the final level in a specified time epoch, if requested. In this case, long term settling error-the difference between the value at the end of the specified epoch and the dc value-also will be reported.

5. Pulse generators that are internally clocked must provide a separate trigger output pulse. For best results, this should lead the wave-form under test by at least 35 ns. If the trigger pulse leads by less than 35 ns, the waveform measurement will begin one cycle later, with a resulting increase in jitter and time-quantization errors. If the pulse generator can be clocked externally, NIST will provide the clock signal and the necessary trigger output signal, when required.

6. The clock pulse requirements should be specified including high level, low level, repetition rate, and duty cycle. Repetition rates between 10 kHz and 10 MHz are preferred. Measurements of other pulse parameters or parameter ranges may be provided by special arrangement. Consulting and advisory services also are available.

back to top of page | back to index of electromagnetic measurements

Peak-to-Peak Detectors (65500S-65501S )

Measurements on peak-to-peak detectors are performed from 100 kHz to 500 MHz. The quantity measured by this service is the rf-ac difference defined as the percentage of difference between the rf and ac input voltages required to produce zero dc detector outputs. A 50 kHz ac reference signal is applied instead of dc. The services available are specified in Table 9.23.

Table 9.23 Measurement Ranges and Uncertainties for Peak-to-Peak Detector Services

Frequency (MHz) Applied Peak-to-Peak
Voltage for "0"
Detector Output (V)
Relative Expanded
Uncertainty (%)
0.1, 0.3, 1.0 1.2 0.08
3, 10 1.2 0.14
30 1.2 0.24
50 1.2 0.58
100, 200, 300 1.2 1.20
400 1.2 1.30
500 1.2 2.20

back to top of page | back to index of electromagnetic measurements




References-Repetitive Pulse Waveform Measurements, Including Settling Parameters

A Custom Integrated Circuit Comparator for High-Performance Sampling Applications, O. B. Laug, T. M. Souders, and D. R. Flach, IEEE Trans. Instrum. Meas.41 (6), 850 (Dec. 1992).

Characterization of a Sampling Voltage Tracker for Measuring Fast, Repetitive Signals , T. M. Souders, H. K. Schoenwetter, P. S. Hetrick, IEEE Trans. Instrum. Meas. IM-36 (4), 956 (Dec. 1987).

 

back to top of page | back to index of electromagnetic measurements

Program questions: Calibrations
Phone: 301-975-2200, Fax: 301-975-2950
NIST, 100 Bureau Drive, Stop 8363, Gaithersburg, MD 20899-8363