

A Practical Evaluation of an OEM's STEP Implementation for MBD

Finds, help needed, and victories

Author: Melissa K. Harvey

Copyright © 2021 Boeing. All rights reserved.

BOEING PROPRIETARY

Agenda

Abstract

How does Boeing ensure our internal STEP implementations are a full solution to meet business needs and how do we manage the change?

 This presentation will describe the approach Boeing has taken to pause, ask this question, and systematic approach taken to start to answer it. This includes the process to define our company's baseline of use cases and MBD requirements for STEP, evaluating the path to production, gap analysis approach, and outlines a proposed path partnering forward for a complete implementation within the company.

• Agenda

- Project Summary
- Results Evaluation
- Feedback Request
- Projected Next Steps

Melissa Harvey

1 Mechanical	I & Electrical Drafter– Shah Smith & Asso	ciates	Educa	tion:	
• 2007 -	 2008: Supported the designing and creation of direct supervision of Master Drafters 	of CAD drawings for HVAC system schematics and riser diagrams ι	2008 Inder	Computer Drafting & Design AS (Valedictorian/Hono ITT Technical Institute	s)
 2 Tech Desig Aug 20 Oct 20 3 Product Data 	 direct supervision of Master Drafters. ner- Boeing 008 – Oct 2009: Performed regression testing for engine 09 – June 2012: Defined engineering requirements for 0 processes. 	eering systems used to validate engineering package process for Bo Change Orders- to improve and optimize solutions for complex engi	2017 2021 CA. neering	Business Administration BS <i>City University</i> Masters in Information Systems (Computer Technolo <i>University of Phoenix</i> Certification in Model Based Systems Engineering <i>MIT</i> Certification in Product Lifecycle Management	gy) (Honors) 2017 2018
 Jun 20 Oct 20 Sept 20 	 12 - Oct 2012: Assisted in the analysis of engineering contributions to the value stream mapp REDARS EID. 12 - Sept 2014: Led outsourcing project for manual eng practices and authoritative documental 014 - Jan 2022: Analyzed future state impact of transition distribution. Resulted in implementation 	design for manufacturing build and inspect processes. Analysis resign of fit-for-use requirements for the development of the 3DPDF for gineering packages to supplier management including authoring bestion, and conducting training. In from proprietary format to industry standards in BCA MBD suppling proposal for high value targets to transition.	ulted in r MBD in t er	Purdue University Certification in Additive MFG MIT Certification in Business Analytics University of Phoenix	2018 2021
4 Computing • Jan 20	 g/System Architect – Boeing 22-Present: Analyzing MBD CATIA V5 & 3DX to ST AP242 in the design and manufacturing 	EP AP242 interoperability. This supports Enterprise/BCA use of ST g processes.	'EP	Computing System	Architect →
2007	2010	2015	2020	202	5

Level Set

• ISO 10303 STEP

 <u>ST</u>andard for the <u>E</u>xchange of <u>P</u>roduct model data between different CAD systems or between CAD and downstream application systems.

Boeing Use Cases

- Design Collaboration
- Manufacturing Build & Inspect
- TDP Fulfilment
- Long Term Archival (LOTAR)
- Scope
 - BCA MBD Programs
- Project Questions
 - Question 1 Where are we at with implementing STEP?
 - Question 2 What will it take to be done?

Question 1: What needs implemented? (the approach)

Question 1: What needs implemented? (the results)

Question 1: What needs implemented? (an example)

Question 1: What is implemented? (the approach)

Copyright © 2020 Boeing. All rights reserved.

BOEING PROPRIETARY

8

Question 1: What is implemented? (the results)

Use Cases

BOEING PROPRIETARY

Database

	Design Object 🔹	STEP Object •	Reccommended Practice •	Associated C	CRs	Associated Part Types			
Tables 8	Material	Material_identification_with_conc Co	mposite Materials	Idea 3		1, 2, 3, 4, 5, 6, 7, 8, 9			
00A_Lookup Key	Parameter	Property_definition_relationship, F U	er Defined Attributes	02_Not Applicable		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	ID - Boeing P	art Types	
00B V5 Mapping Matrix	Axis System	Axis_placement, Axis_placement_: G	ometric and Assembly Validatio	02_Not Applicable		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	Doeing P	art types	
Cob_vo Mapping Madix	Reference Designator	Assembly_definition, Assembly_sh. El	ectrical Wire Harness Tutorial Pa	02_Not Applicable		9	Detail Part		
00C_3DX Mapping Matrix	Part Body	Bead_end_type, Bead_feature 01	_Gap	03_CR Needed		4	2 Machined Part		
01A LIST Rusiness Canability	Material Standards Table, Sheetm	Form_feature_in_panel 01	_Gap	03_CR Needed		4	3 Casting & Forgi	ng Part	
01B_LIST_Part Type	Wireframe	Form_feature_in_panel 01	Gap	03_CR Needed		4	4 Sheetmatel Day	+	
01C LIST Paguirement	Wireframe	Form_feature_in_panel 01	Gap	03_CR Needed		4	4 Sheetmetal Par	t	
orc_cor_vequirement	Part Body	Form_feature_in_panel 01	_Gap	03_CR Needed		4	5 Composite Part	Ľ	
01D_LIST_Sub Requirement	Parameter	PropertyDefinitionRelationship U	er Defined Attributes	03_CR Needed		3	6 Mechanical Sys	tems Part	
02A_LIST_DS Object	Notes, Producibility Parameters	02_TBD Co	mposite Materials	03_CR Needed		5	7 Systems (Rigid)	Part	
03A_List_Standards	Composite Parameters	Composite_material_identification Co	mposite Materials	02_Not Applicable		5	7 Systems (HBid)	L L D	_
028 LIST Application Protocol	Reference Designator	Connector_based_interconnect_d 01	Gap	02_Not Applicable		9	8 Systems (Flexib	le) Part	
USB_LIST_Application Protocol	Connectors	Connection_definition_to_connec 03	Gap	03_CR Needed		6, 7, 8	9 Electrical Part		_
03C_LIST_STEP Object	Solid, Surface, Wireframe	Constructive_geometry, Construct Su	pplemental Geometry	02_Not Applicable		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	10 Assembly Part		
04A_LIST_RP	Core, Solid	Beveled_sheet_representation, Be Co	mposite Materials	02_Not Applicable		5	11 Installation Day		
04B LIST RP Object	Core Sample	Percentage_laminate_table, Perce Co	mposite Materials	01_Gap		5	11 Installation Par	t	
	Part Body	Form_feature_in_panel 01	Gap	03_CR Needed		4			
05A_LIST_IT Build	Part Body	B_spline_curve, Boundary_curve, (G	ometric and Assembly Validatio	02_Not Applicable		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11			
11_LOG_Change Requests	Part Body, Wireframe	Basic_round_hole, Basic_round_h(0)	_Gap	03_CR Needed		4			
Queries 8	FT&A	Property_definition_relationship 03	_Gap	03_CR Needed		3			
3DX Part Type Query	Parameter	Property_representation, Property U	er Defined Attributes	02_Not Applicable		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11			
3DX to STEP Query	02_Not Applicable	3-branch_node, 3-external_node, 02	_Not Applicable	02_Not Applicable		•			
	Part Body	Cutout, Cutout_edge_segment, Cu 02	_Not Applicable	02_Not Applicable	Module/Re	sc • 10303 ENITY •	Language • Object Type •	AP203 •	AP242
VS Part Type Query	Solid, Surface, Wireframe	Next_assembly_usage, Next_asser G	ometric and Assembly Validatio	02_Not Applicable	484	ApplicationDomain	XML TYPE		
V5 to STEP Query	Reference Designator	Occurrence, Part, Part, Part_occur El	ectrical Wire Harness Tutorial Pa	02_Not Applicable	484	ApplicationDomainSelect	XML TYPE		
	Solid, Surface, Wireframe	Product, Product_view_resource Ex	ternal References	02_Not Applicable	44	Applied_activity_assignment	EXPRESS ENTITY	H	
	Reference Designator	3-splice 01	_Gap	Idea 24	38	Applied_activity_method_assignment	EXPRESS ENTITY		
	Wireframe	Direction, Direction 01	Gap	03_CR Needed	326	Applied_independent_activity_propert	EXPRESS ENTITY	H	
	Parameter	02_TBD 01	_Gap	01_Gap	32	Applied independent property	EXPRESS ENTITY	П	
	Orientation Parameter, Paramete	02_TBD 0:	_Gap	03_CR Needed	32	Applied independent property relatic	EXPRESS ENTITY	П	
	Parameter	02_TBD 0:	_Gap	03_CR Needed	162	Applied_independent_resource_prope	EXPRESS ENTITY		
	Parameter, Part Body	02_TBD 0:	_Gap	03_CR Needed	431	Applied_independent_test_result_prop	EXPRESS ENTITY		
	Parameter, Part Body	Basic_round_hole, Basic_round_h(0)	Gap	03_CR Needed	136	Applied_information_usage_right	EXPRESS ENTITY		
	Parameter, Part Body	02_TBD 01	_Gap	03_CR Needed	431	Applied_process_operation_occurrenc	EXPRESS ENTITY		
	Solid, Surface, Volume	02_TBD 0:	_Gap	03_CR Needed	149	Applied_state_assignment	EXPRESS ENTITY		
	Orientation Parameter	Ply_orientation_angle, PlyOrientat Co	mposite Materials	02_Not Applicable	237	Applied_state_definition_assignment	EXPRESS ENTITY		
	TBD	02_TBD 03	TBD	04_TBD	431	Applied_test_activity	EXPRESS ENTITY		
	Surface	Form_feature_in_panel 0:	Gap	03_CR Needed	16	Approval	EXPRESS ENTITY		
	Part Body	Form_feature_in_panel 01	Gap	03_CR Needed		4			
	TBD	01_Gap 01	_Gap	03_CR Needed		10, 11			
	Parameter	Property definition relationship. F.P.	1 Gap	03 CR Needed		2			

Copyright © 2020 Boeing. All rights reserved

BOEING PROPRIETARY

Question 2: Implementation Analysis (the workflow)

Question 2: Implementation Analysis (the tentative results)

Question 2: Gap closure plan

• Finding(s):

- Boeing BCA has 2 different installations of STEP in place

• Plan

- Synchronize STEP implementation across Boeing
- Boeing workshop to determine gap owners
- Engage in external bodies to submit CRs
 - Dassault Systems PERs
 - ISO NWIs
 - CAx-IF User Stories
 - Boeing IT CRs
- Continue requirement decomposition to
 - Attribute
 - Property
 - Relationship

Melissa.K.Harvey@boeing.com

