ISO 10303 - STEP model-based before model-based was cool

Model-Based Enterprise Summit MxD April 16, 2024

Allison Barnard Feeney

Outline ISO TC 184/SC 4 Industrial data STEP 101 STEP today Your tax dollars at work

Composite Structures Hybrid Brep Modeling UUID in STEP EXPRESS models Interoperability testing support EasyEXPRESS CAx Interoperability Testing Support Questions?

ISO TC 184/SC 4 Industrial Data

ISO TC 184/SC 4 Industrial Data

ISO 10303: Product data representation and exchange
 STEP: STandard for the Exchange of Product model data

SC 4 Industrial Data

801 Published 43 In development 22 Participating countries 12 Observing countries

Active SC4 Standards

ISO 8000 - Data Quality
ISO 10303 - Product data representation and exchange
ISO 15926 - Integration of life-cycle data for process plants including oil and gas production facilities
ISO 17506 - COLLADA digital asset schema specification for 3D visualization of industrial data
ISO 23247 - Digital Twin manufacturing framework
ISO 23301 - STEP Geometry Services
ISO 23952 - Quality information framework (QIF) — An integrated model of manufacturing quality information
ISO 24464 - Visualization elements of digital twins
ISO 29002 - Exchange of characteristic data

SC4 Organizational Structure

ISO/TC 184/SC 4/AG 0	Change management advisory group			
ISO/TC 184/SC 4/AG 2	Implementation Forum			
ISO/TC 184/SC 4/AG 3	Core terminology for industrial data			
ISO/TC 184/SC 4/AHG 3	UUID management for industrial data			
ISO/TC 184/SC 4/JWG 16	Joint with ISO/IEC JTC 1/SC 24 & ISO/TC 171/SC 2 WG: Formats for visualization and other derived forms of product data			
ISO/TC 184/SC 4/JWG 24	Joint with IEC SC3D WG: Use of IEC CDD for ISO data dictionaries and ontologies			
ISO/TC 184/SC 4/PPC	Policy and planning committee			
ISO/TC 184/SC 4/QC	Quality committee			
ISO/TC 184/SC 4/TF 1	ISO 10303 SMRL architecture innovation			
ISO/TC 184/SC 4/TF 2	SC 4 reference model for industrial data			
ISO/TC 184/SC 4/TF 3	SC 4 Common change process			
ISO/TC 184/SC 4/WG 3	Oil, Gas, Process and Power			
ISO/TC 184/SC 4/WG 11	Implementation methods and conformance methods			
ISO/TC 184/SC 4/WG 12	STEP product modelling and resources			
ISO/TC 184/SC 4/WG 13	Industrial Data Quality			
ISO/TC 184/SC 4/WG 15	Digital manufacturing			
ISO/TC 184/SC 4/WG 21	SMRL Validation Team			
ISO/TC 184/SC 4/WG 22	Reference data validation team			
ISO/TC 184/SC 4/WG 23	Vocabulary validation team			
ISO/TC 184/SC 4/WG 25	ISO CDD Validation Team			
ISO/TC 184/SC 4/WG 26	Ontology-based interoperability NEW!			

OMMUNICATIONS ECHNOLOGY ABORATORY

STEP – Designed to be Model-Based (in the 80s)

"ISO 10303 is an International Standard for the computer-interpretable representation and exchange of product data. The objective is to provide a neutral mechanism capable of describing product data throughout the lifecycle of a product, independent from any particular system. The nature of this description makes STEP suitable not only for neutral file exchange, but also as a basis for implementing, sharing product databases, and archiving ."

Key criteria

- STEP's large scope necessitates subdivision into Parts
- STEP is completely driven by industrial requirements.
- A formal data definition language is necessary (but not sufficient) for unambiguous definition of data.
- Separate data specifications from implementation methods.
- Conformance testing methods are built into the STEP architecture.

OMMUNICATIONS ECHNOLOGY ABORATORY

STEP Architecture (Classic)

Description **Methods**

Part 11 **EXPRESS** Language Reference Manual

Part 14 EXPRESS-X Language Reference Manual

Data Specifications

Application Protocols Parts 200+

Application Interpreted Constructs Parts 500+

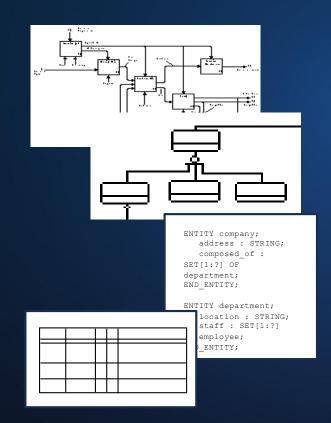
Integrated Resources

Application **Integrated Resources** Parts 100+

Integrated Resources Parts 41-99

Implementation Methods Part 21 Physical File, Parts 22-29 Data access methods

Conformance Testing


Part 31 General Concepts

Parts 32-35 **Reqs for Test** Labs & Clients **Test Methods** for File & Data access method

Parts 300+ Abstract Test Suites

NIST COMMUNICATIONS TECHNOLOGY LABORATORY

Application Protocol Development

Application Activity Model (AAM)

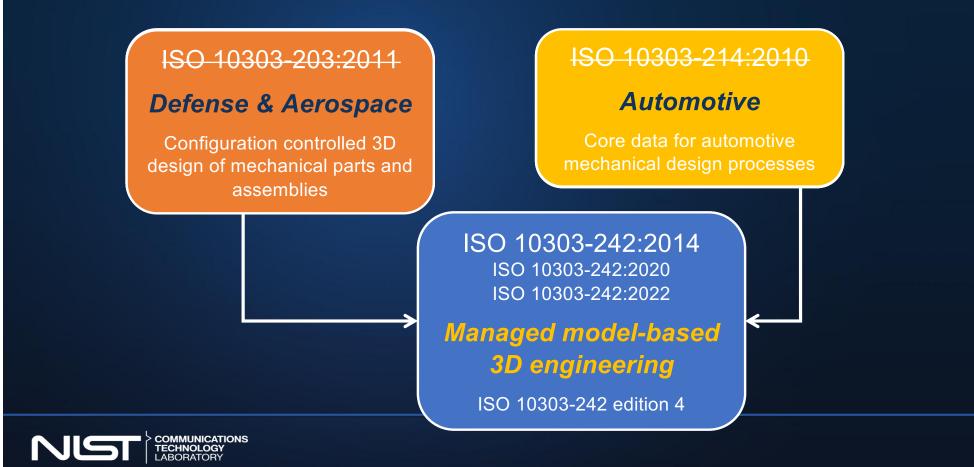
A model that describes activities within the boundaries established by application context. This is a requirements gathering and scoping mechanism.

Application Reference Model (ARM)

A model that describes the information requirements and constraints for an application domain. The model uses application-specific terminology and rules that are familiar to domain experts.

• Interpretation/Mapping

The process of understanding application domain concepts and identifying and specializing the entities and patterns in the IRs that are semantically equivalent to the ARM concepts. A table that specifies the relationship between concepts in the ARM and constructs in the AIM.


Application Interpreted Model (AIM)

A model that specifies the STEP data structures that are semantically equivalent to the concepts documented in the ARM and AAM.

COMMUNICATIONS TECHNOLOGY

First Widely Adopted STEP APs

STEP Today

STEP Architecture (Now)

Description Methods

New from 2021: SysML XMI to XSD transformation

SysML XMI to EXPRESS transformation

EXPRESS to SysML CXMI transformation

SysML XMI to Web services transformation Data Specifications

Application Protocols Parts 200+

Application Modules Parts 400+ and 1000+

Core and Domain Models Parts 4000+1999

> Integrated Resources Parts 100-199

Integrated Resources Parts 41-99

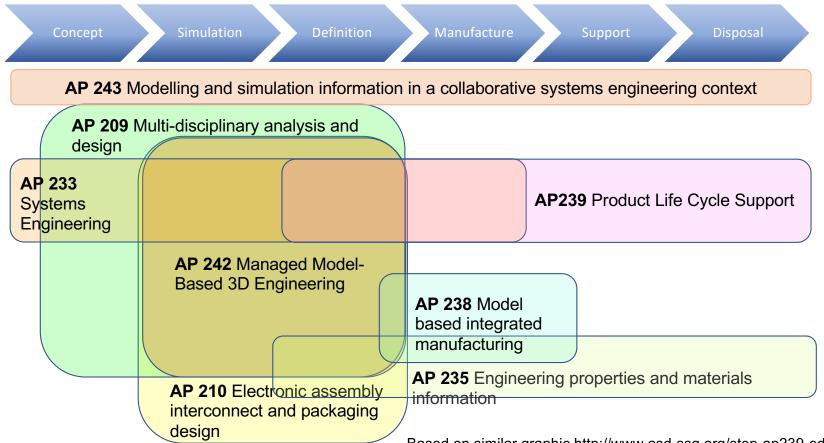
Implementation Methods Part 21 Physical File, Parts 22-29 Data access methods

Interoperability Testing

MBX-IF Umbrella Org. CAx – Shape, PMI EWIS – Wire Harness CAE – FEA

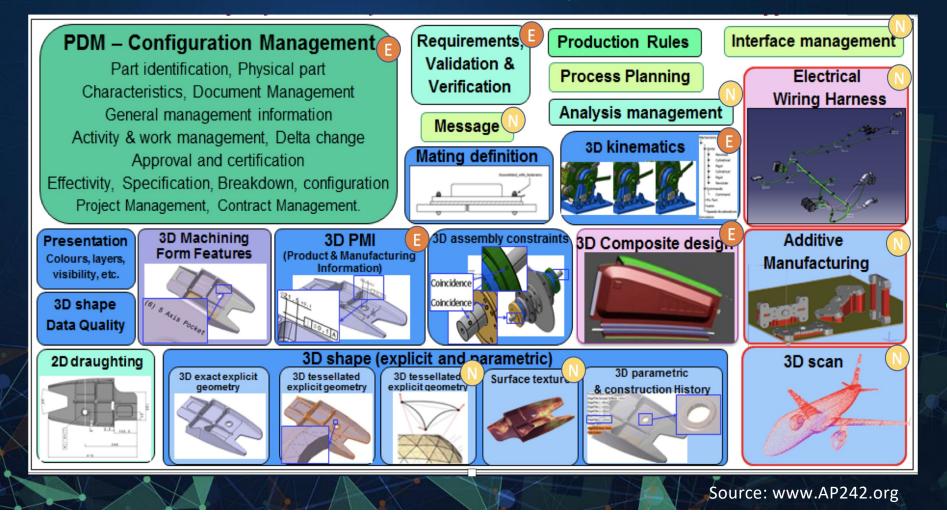
Each IF has User Group Requirement id and prioritization

Implementer Group Support test rounds


Produces Recommended Practices

TECHNOLOGY LABORATORY

ISO 10303 – Product Lifecycle Coverage


Product Information

Based on similar graphic http://www.asd-ssg.org/step-ap239-ed3.

NIST

ISO 10303-242:2022 Current Capabilities

ISO TC 184/SC 4 Product Data Standards

ISO 10303 Application Protocols

10303-209:2014	Multidisciplinary analysis and design, e2
10303-210:2021	Electronic assembly interconnect and packaging design, e4
10303-233:2012	Systems Engineering
10303-235:2019	Engineering properties and materials information, e2
10303-238:2022	Model based integrated manufacturing, e3*
10303-239:2012	Product life cycle support, e2*
10303-242:2022	Managed model based 3D engineering, e3*
10303-243:2021	For modelling and simulation information in a collaborative systems engineering context (MoSSEC)

Related SC 4 standards

SO 23952:2020	Quality Information Framework – An integrated model for manufacturing quality information
---------------	---

ISO 23247 Digital twin framework for manufacturing

ISO 23247-1:2021	Overview and general principles
ISO 23247-2:2021	Reference architecture
ISO 23247-3:2021	Digital representation of manufacturing elements
ISO 23247-4:2021	Information exchange

* Denotes standards currently under revision

STEP Strengths

Accurate data exchange

- STEP has a long history of being able to accurately capture product definition and provide data interoperability between native systems
- Product data repurposing and reuse
 - CAM / CMM solution providers can use AP242 PMI representation data for the automation of manufacturing and inspection planning
- Consistent long term archival
 - LOTAR Int'l concluded STEP is stable for long term archival (>70 years) and recommends STEP for complying with NAS/EN 9300: Long Term Archiving and Retrieval of digital technical product documentation such as 3D, CAD and PDM data
- Widely implemented
 - STEP file exchanges number in the hundreds of millions annually
 - Savings through improved interoperability in \$ billions annually

STEP Gaps and Challenges

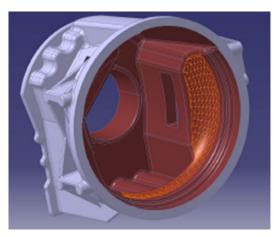
- STEP currently lacks the geometric modeling formalism to perform reconciliation of CAx data across domains
 - This is an impediment to achieving *digital twins*
- STEP lacks persistent IDs for traceability to the authority CAD model through all process steps
- Implementations lag behind standards development By a LOT! We lack robust implementation of manufacturing features in AP242.
- The STEP publication process depends on a brittle, bespoke toolchain.
- We need better and free tools that make our standards more attractive to entrepreneurs seeking to innovate in our ecostystem.
- We need people developing and championing the standard. Come join the fun!

Your tax dollars (and more!) at work

ISO 10303-242 edition 4

Updates	XML	Part 21	Enhancements	
Assembly PMI	Х	Х	Process planning harr	n
PMI		Х	AP238/AP239	
Product Data Quality ed3, PMI data quality and triangulated		Х	Integrate CAx-IF record practices in document	
shape DQ			Bounding boxes and L	_(
Composites harmonization		Х	geometry services	
EWIS corrections	X		Extensions	
Domain model mappings to	X		Hybrid Brep geometric)
ISO 4000			UUIDs	
Deprecate geometry AICs		Х	Visual issue manage	n
			JSON webservice imp	

Enhancements	XML	Part 21	
Process planning har AP238/AP239	monization with	Х	Х
Integrate CAx-IF reco practices in documer		-	-
Bounding boxes and geometry services	LOD for STEP	Х	
Extensions		XML	Part 21
Hybrid Brep geometr	c modeling		Х
UUIDs			Х
Visual issue manage	ment		Х
JSON webservice im	plementation	Х	

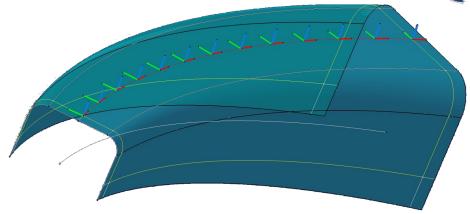

More info to follow

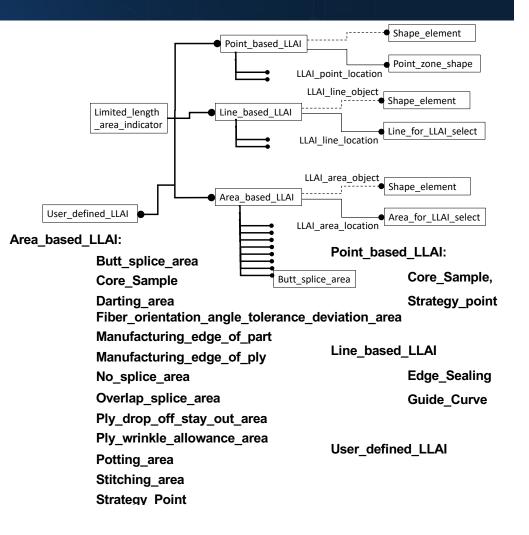
Hybrid Brep Geometric Modeling

Hybrid b-rep modeling offers formal integration of multiple sources and types of geometry into a single brep geometric model.

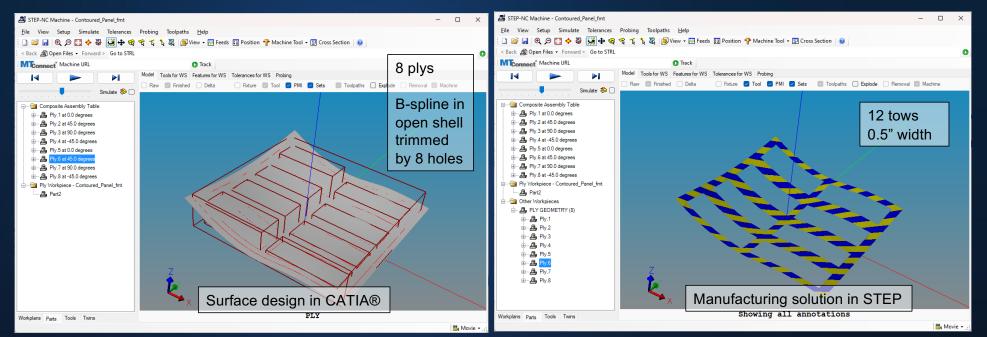
e.g., include facet geometry with precise geometry in a 3D model and edit seamlessly, without conversion.

STEP hybrid b-rep data structures support mappings to Polyhedral B-repsTM (Dassault Systèmes), Convergent B-repsTM (Siemens), Mixed Modeling (PTC onshape), etc.


Torque converter (courtesy of prostep ivip, used with permission)


The new hybrid b-rep model:

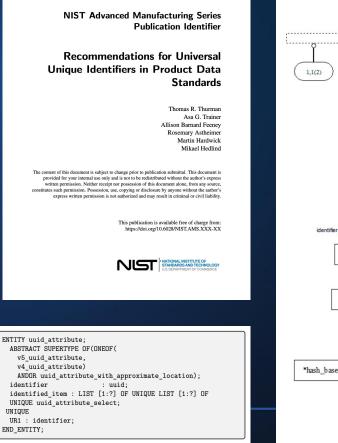
- is consistent with geometric models and geometric model elements in ISO 10303-42 *Geometric and topological modeling;*
- is aligned with ISO 23952 Quality information framework hybrid geometric model;
- supports modeling requirements for Isogeometric Analysis (IGA).

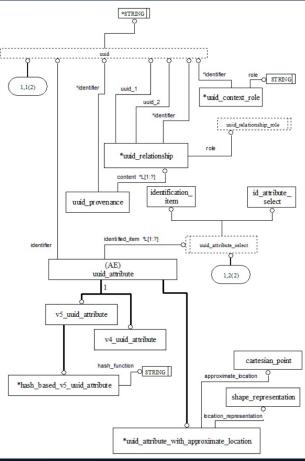

Composite Structures Harmonization

- New STEP capability for intelligent notes with associated specifications for laminate tables
- 10303-1854 Limited length or area indicator assignment (LLAI) – published
 - An LLAI may be associated with point, line, or area aspects of a laminate table or components of a laminate table
- 10303-1854 and ASME Y14.37 have been jointly harmonized to this data model

Composites Manufacturing in AP238 E4

Phase 1 (CD) – Plan manufacturing solution for AP242 model Phase 2 (DIS) – Test manufacturing solution on tape layup machine Phase 3 (IS) – Build digital twin of laid solution and <u>analyze for gaps</u>


NIST Communications TECHNOLOGY LABORATORY


UUIDs in Product Data Standards

Associating UUIDs, combined with human-readable identifiers, to key manufacturing requirements, enables the enterprise to track all information related to that requirement over the life of the product.

The lack of standards and commercial engineering software support of UUIDs is a major roadblock to realizing the promises of the digital thread and model-based enterprise.

EasyEXPRESS – Editing Support for EXPRESS

EXPRESS language server

Integrates EXPRESS model validation with authoring environment.

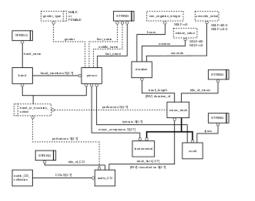
Reduces cognitive load on modelers

Common code editing conventions provide integrated and real-time feedback:

- red squiggly lines identify errors
- syntax highlighting for visual navigation
- traditional development features such as <u>IntelliSense</u>, <u>Code Navigation</u>, or <u>Symbol</u> <u>renaming</u>.

Available through the Visual Studio Code Marketplace @

```
https://bit.ly/49DfBfA
```

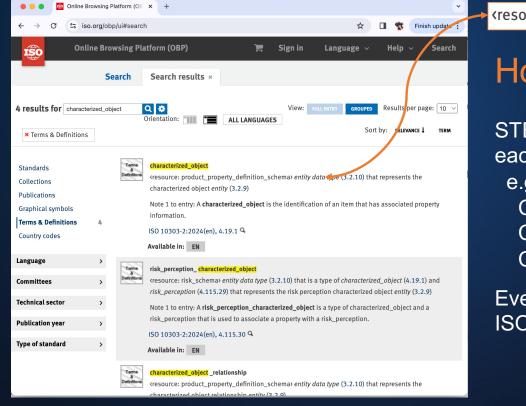

•••

```
1 SCHEMA Nist;
2
3 USE FROM Help (Date, getAge);
4
5 ENTITY Person;
6 firstName: STRING;
7 lastName: STRING;
8 dateOfBirth: Date;
9 END_ENTITY;
10
11 ENTITY Employee SUBTYPE OF (Persson);
12 WHERE:
13 WR1: getAge(SELF.dateOfBirth) > 16;
14 END_ENTITY;
15
16 END_SCHEMA;
```

Same EXPRESS model with easyEXPRESS visual feedback

ISO/TC 184/SC 4/TF 1 SMRL architecture innovation

- ISO/TC 184/SC 4/WG 12 manages a tool chain for a computer generated version of ISO 10303 that fully integrates all the parts of the standard, performs integrated quality checks and publishes to ISO.
- Project will deploy a GIT source code control server and associated defect management system within the ISO IT infrastructure enabling the concurrent development of ISO 10303 and its parts, including models, schemas, validation and modeling tools.
- The SMRL will be refactored into a STEP Reference Library (SRL) resulting in significant reduction in publications and improvement in quality.
- Prototype for other TC's to follow for standards where code management techniques are a better fit than document management.

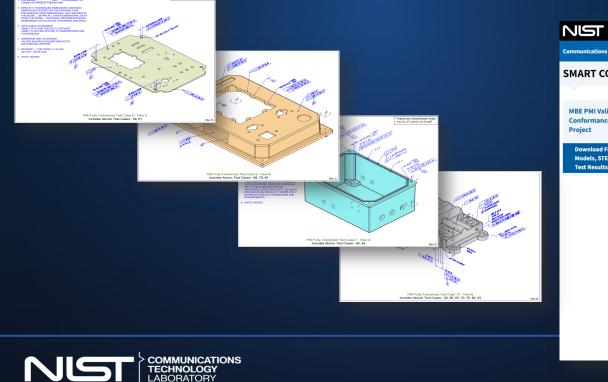


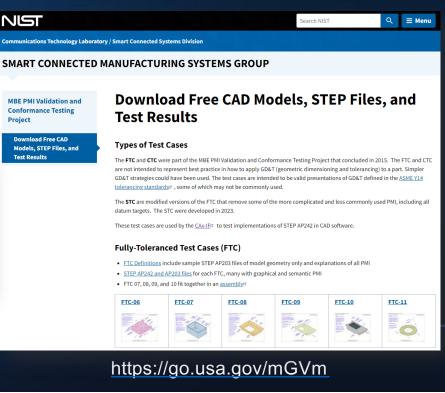
Express Modeling Language

ISO 10303-2:2024 Part 2: Vocabulary

COMMUNICATIONS ECHNOLOGY ABORATORY <resource: product_property_definition_schema> entity data type (

Hot off the presses!

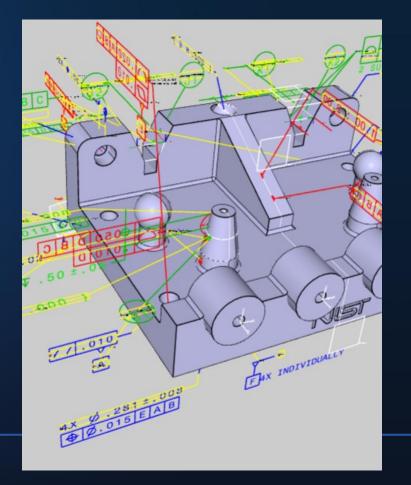

STEP Part 2 contains all of the vocabularies in each part of the standard.
e.g., for an AP –
Clause 3 Terms and definitions
Clause 4 Application objects
Clause 5 Interpreted model entities and types


Every STEP definition is readable for free, via ISO's online-browsing platform.

https://www.iso.org/obp/ui

NIST Test Models

Translated by and exchanged between vendors


NIST STEP File Analyzer and Viewer

- Generates spreadsheet of all entities and attributes
- Analyzes STEP files for conformance to CAx-IF Recommended Practices
 - Semantic PMI, Graphic PMI, Validation Properties
- Checks for basic STEP file format errors
- Viewer displays in a web browser
 - Geometry: b-rep, tessellated, supplemental, sketch
 - Graphical PMI, annotation placeholder, datum targets
 - Saved view viewpoints, section view clipping planes
 - AP209 finite element analysis model
 - Cloud of points validation property, point clouds
- Bill of Materials of assemblies and components

https://go.usa.gov/xuh9V

MMUNICATIONS CHNOLOGY BORATORY

ISO 10303 - Resources

- Rich history of STEP involvement and publications
- Keywords: STEP, ISO 10303, Product Data Standards, etc.
- Authors: J. Lubell, A. Barnard Feeney, D. Libes, S.N. Clark, T. Hedberg, etc.
- ISO TC 184-SC 4 committee website.
- User-oriented information about the subcommittees work.
 <u>https://committee.iso.org/home/tc184sc4</u>
- MBx Interoperability Forum.
- Hosts user groups, vendor test rounds and produces recommended practices for implementation. <u>https://www.mbx-if.org/index.php</u>
- Recommended practices <u>https://www.mbx-if.org/cax/cax_recommPractice.php</u>

AP242 project website.

 Background on development of AP242 and its first two editions. <u>www.ap242.org</u>

STEP AP242 Day 2022 (and other years) webpages.

 Presentations include use cases, interoperability testing plans, vendor status reports. <u>https://www.afnet.fr/en/feedback-afnet-prostep-ivip-step-ap242-day/</u>

Questions?

Reach out:

Allison Barnard Feeney abf@nist.gov

