NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

LICENSING OPPORTUNITY THE NIST RADIOMETER

Ref. 13-008

THE TECHNOLOGY

U.S. Patent Number 9,291,499

This advanced radiometer is composed of a substrate, a radiation absorber placed on the substrate to absorb radiation, a thermal component placed on the substrate to change electrical resistance in response to a change in temperature of the radiometer, and a thermal link to connect the radiometer to a thermal reference. The NIST radiometer is designed to absorb approximately 100% incident optical power using vertically aligned carbon nanotubes – the most ideal absorber – to accurately measure optical power.

ADVANCED

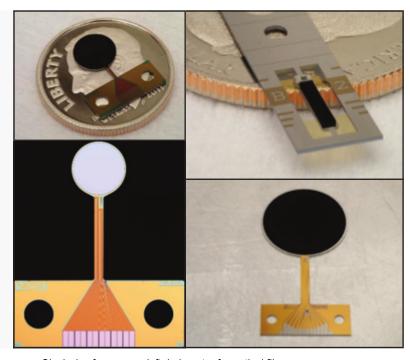
ABSORBENT EFFICIENT

The NIST radiometer, the most advanced technology to date in measuring optical power, can give accurate measurements with the following benefits:

Non-bulky and does not require many individual components to craft

Is optimal for detecting transient optical signatures

Is not limited in reading conical surfaces


BENEFITS

Wide variety of usages including optical power meters

Useful in an imaging array,a broadband (multispectral) sensor, or a multi-element trap readiometer

Is a thermal detector for optical radiation, including infrared radiation

Can be electrically connected or optically connected to various devices

Clockwise from upper left: bolometer for optical fiber power measurement operates at 4K, bolometer for space-based measurement of solar spectral irradiance, operates at room temperature; bolometer for continuous wave, visible/near infrared laser power measurement, operates at room temperature; bolometer for fast far infrared power calibration, operates at 4K

CONTACT

Technology Partnerships Office (TPO)

National Institute of Standards and Technology Gaithersburg, MD 20899 licensing@nist.gov