

Characteristic Accountability

Belcan Digital Engineering Solutions

Vision

Belcan Digital Engineering Solutions is your trusted partner to bridge strategy and execution to achieve your digital vision.

Strategy

Purpose and Scope

Readiness Assessment

Digital Capability Targets

Strategy and Governance

Viable Business Case

Executive Support

Enterprise Lead Team

Transformation Roadmap

Org Change Management

Execution

Agile Task Execution

Industry Standard Alignment

Creator and Consumer Training

Software Selection

Pilot Execution

Digital Thread Traceability

Supply Chain Enablement

Process Automation

Rapid Response

Lead Team

- **Experience:** 10 SMEs, each with 5+ Years of MBE Implementation
- Industry Engagement: ASME, DMSC, DEDMWG, AIA, INCOSE, CCSU
- Certifications: Agile, ASME GD&T Senior Level, OCSMP
- Software: Tool Agnostic, Multi-CAD/PLM/MBE/MBSE

Belcan Overview

- 65 years of Engineering Better Outcomes
- Global Delivery Network
- 10,000 Professionals
- Annual Revenue of ~\$1B

Aerospace

Defense

Marine

Automotive

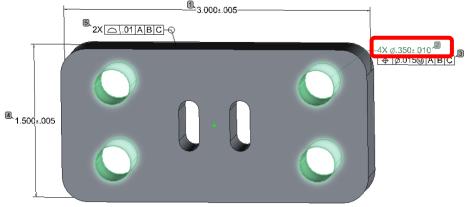
Off-Highway

Government

Industrial

Terminology

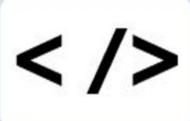
Characteristic: a verification requirement such as a tolerance or specification that is conveyed through the engineering definition


Characteristic Tag: a human and/or machinereadable tag applied to a characteristic

Bill of Characteristics (BoC): a list of all the characteristics applied to a product

Characteristic Accountability: ensuring all characteristic requirements have been met with traceability through verification results

Characteristic Characteristic Tag


Bill of Characteristics (BoC)

🗊 Info	rmati	on	Bill of Ch	aracteri	stics [042a54c3	-3330-4	d25-ab51-0f6956	5b8517c]								
ISIR	Repo	ort Ty	pe v	t V Reset	□⊕ ☑⊕ Decolorize	[∕∐ Hide	ළු Re-Balloon	Export	Import	Eind	HTML Report	3D HTML Report	PDF R	_	ni Publisi	ni h Import
V	Ta	g	Saved Viev	v	Feature Nam	e	Annotation Na	me		GD	&T		(-)	1	(+)	DRF
J	\leftrightarrow	1	01 TOP	C	pposite Planes	517	ad21			3,000	± 005		005	3.000	.005	-
1	Ø	2.1	01_TOP		Cylinder 512		ad11			Ø.350	±.010		010	.350	.010	-
V	Ø	2.2	01_TOP		Cylinder 514		ad11			Ø.350	±.010		010	.350	.010	-
V	Ø	2.3	01_TOP		Cylinder 513		ad11			Ø.350	±.010		010	.350	.010	-
V	Ø	2.4	01_TOP		Cylinder 515		ad11			Ø.350	±.010		010	.350	.010	-
V	Ф	3.1	01_TOP		Cylinder 512		gp0		0	Ø.015	M AB		-	-	.015	A/B/C
V	Φ	3.2	01_TOP		Cylinder 514		gp0		4	Ø.015	MABO		-	-	.015	A/B/C
V	0	3.3	01_TOP		Cylinder 513		gp0		4	Ø.015	MABO	5	-	-	.015	A/B/C
V	Φ	3.4	01_TOP		Cylinder 515		gp0		4	Ø,015	MABO		-	-	.015	A/B/C
V	\leftrightarrow	4	01_TOP	(pposite Planes	521	ad23			1,500	±,005		005	1.500	.005	-
V	\circ	5.1	01_TOP		Generic 538		gp1				ABC		-	-	.01	A/B/C
V	0	5.2	01_TOP		Generic 542		gp1		Ì	□ 01	ABC		-	-	.01	A/B/C

Belcan

QIF Overview

Feature-Based Characteristic Centered Ontology of Manufacturing Quality Metadata XML Technology:
Simple
Implementation
with Built-In
Code
Validation

Developed and Maintained by the Digital Metrology Standards Consortium (DMSC)

Information
Semantically
Linked to MBD
for Full Data
Traceability via
Persistent IDs

(QPId/UUID)

QIF 3.0 Approved as an Digital Interoperability Standard ANSI/DMSC 3.0; ISO 23952:2020

Digital Metrology
Standards Consortium

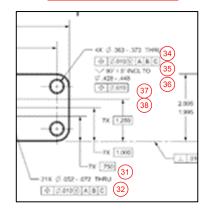
Learn more!

https://qifstandards.org/

Belcan Blog:

How QIF Can Improve Data Interoperability

Drawing-Based Characteristics

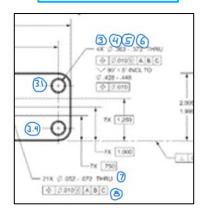


Suppliers author complete BoC

Gaps to a Digital Thread

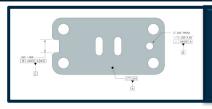
- Single Source of Truth: Characterization is unique to each supplier
- **Speed:** Time consuming with little automation
- Quality: Manual data transcription is error prone
- Traceability: Manual effort to align inspection results and req's
- Interoperability: BoC does not support machine workflows
- Consistency: Characterization is not done to any industry stds

Supplier A


(52) Technical Specification of Road Sign Board

Dwgs

2D

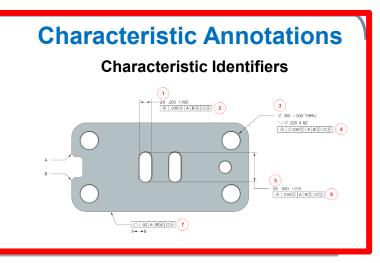

Translard Specifications Schodald I: Retroevelhetive sheeting: The retro-refrective sheeting used on this sign consist of white or coloured sheeting having a smooth outer surface which has the property of retroe reflection over its entire surface. It shall be weather resistance and show colour fatness. In the little weather resistance and show colour fatness. In the little weather resistance and show colour fatness, in the little resistance of the shoeting for these properties in an unprotected outdoor expoure facing the sans for two years and is having passed these tests shall be obtained from a reproducted between the manufacturer of the sheeting. These reflective sheeting shall either of langueous Grade material or of fligh Immunity Grade with encapeable flow. More promising type. The type of destings to be under the sheeting shall be destined to be under the sheeting shall be reflected and improvement of the read. Italian internal for the cheeting. 52.1 The sheeting shall be of encapeabled by the flowth. Empayment super proof phase kineting a smooth surface. The retro-reflective service-reflection determined in accordance with ASTM standard Ex 180 as indicated in table 800-1(a). 52.2 bits 800-16, Aprile (In Page 16). 52.2 bits 800-16, Aprile (In Retrance).

Supplier B

	3 Techi	nical Sp	ecificatio	n of Road			
	2.22					_	
Technical Spe							
ichedule I: B	etro-reflective	e sheeting	2				
outer surface esistance and scaling, pitting certificate of h he sun for two	which has the show colour fi , blistering, es aving tested the years and its l	property istness. It dge lifting he sheeting having pas	of retro ref shall be new or curling a g for these pe sed these test	lection over and unused a nd shall have roperties in as s shall be obt	its entire surfa nd shall show a negligible shr a unprotected o	ice It sh to evident inking or utdoor or puted lab	aving a smooth hall be weather nee of cracking, or expansion. A exposure facing boratory by the
Eigh intensity A) En This sl adherer a smoo	Grade sheeti capsulated Le cetting shall b I to a synthetic th surface. Th	ng, ns type : se of enca resin and se retro-re he minimu	apsulated len encapsulated flective surfa arn co-efficie	s type consist by a flexible, are after clea at of retro-ret	nt of the road. sting of spheris, transparent waning with soap	cal glass ster proo	s lens element, of plastic having ater and in dry occordance with
Would depend High intensity A) En This sl adhere a smoo conditi ASTM	Grade sheeti rapsulated Le cecting shall b I to a synthetic th surface. Th on shall have t standard E: 81	functional ng, ns type: se of enca resin and se retro-re he minima 0 as indica	psulated len encapsulated flective surfa am co-efficie ated in table 8	s type consists by a flexible, see after clea att of retro-ret 100-1(a).	ating of spheris transparent wa ning with soap flection determi	cal glass ster proo and wa ined in a	ting to be used s lens element, of plastic having ater and in dry
Would depend High intensity A) En This sl adhere a smoo conditi ASTM Fable 800-1(a Observation	Grade sheeti capsulated Le secting shall l lso a synthetic th surface. TI standard E: 81 Entrance Angle (In	ng, ns type : se of enca resin and se retro-re he minimu	apsulated len encapsulated flective surfa arn co-efficie	s type consist by a flexible, are after clea at of retro-ret	nt of the road. sting of spheris, transparent waning with soap	cal glass ster proo	ting to be used s lens element, of plastic having ater and in dry
Would depend High intensity A) En This si adhere a smoc conditi ASTM Fable 800-1(a	Grade sheeti capsulated Le eceting shall b to a synthetic th surface. To m shall have t standard E: 81	functional ng, ns type: se of enca resin and se retro-re he minima 0 as indica	psulated len encapsulated flective surfa am co-efficie ated in table 8	s type consists by a flexible, see after clea att of retro-ret 100-1(a).	ating of spheris transparent wa ning with soap flection determi	cal glass ster proo and wa ined in a	ting to be used s lens element, of plastic having ater and in dry

MBD Data Elements

MBD DATA ELEMENTS

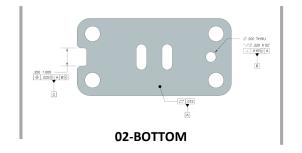

Geometry

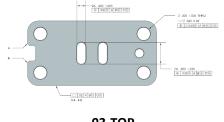
Geometry Definition

Annotations Explicit Requirements GD&T – Notes – Symbology – Semantic References *Annotations are also known as Product and Manufacturing Information (PMI)

01-ISOMETRIC

Attributes and Parameters

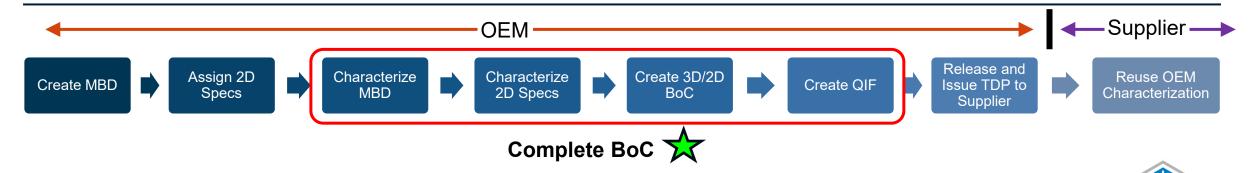

Implicit Requirements


Titleblock Data

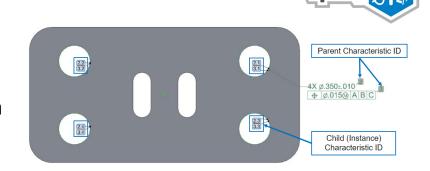
		Name	Formula	Yake	Units		Dimensionality	Typ	Ne .	Source	Status	Comment	Alert	Checks	Group	User Expression
	٧.	Default Group													«None»	
					in	*	Length	▼ Nar	rber *						Default Group	
		- p0	0.25	0.25	in		Length	▼ Nur	mber	(SKETCH_000:Sk					Default Group	-
		p1	p0	0.25	in		Length	¥ Nµ	mber	(SKETCH_000:Sk					Default Group	-
		- p2	p0	0.25	in		Length	▼ Nur	riber	(SKETCH_000:Sk					Default Group	-
		p3	p0	0.25	in		Length	▼ Nur	riber	(SKETCH_000:Sk					Default Group	-
		- p4	0	0	in		Length	▼ Nur	riber	(Extrude(2) Start					Default Group	-
3		p5	.5	0.5	in		Length	▼ Nur	mber	(Extrude(2) End					Default Group	-
		p54	.350	0.35	in		Length	▼ Nur	mber	(00.35 Hole(3) D					Default Group	-
0		p118	.5	0.5	in		Length	▼ Nur	nber	(00.35 Hole(3) P					Default Group	-
1		p119	p118	0.5	in		Length	≠ Nur	nber	(00.35 Hole(3) P					Default Group	-
2		p120	0.375	0.375	in		Length	▼ Nur	riber	(00.35 Hole(3) P					Default Group	-
3		p121	p120	0.375	in		Length	▼ Nur	riber	(20.35 Hole(3) P					Default Group	-
4		p122	.200	0.2	in		Length	▼ Nur	mber	(SKETCH_002:Sk					Default Group	-
5		p123	p122	0.2	in		Length	▼ Nur	mber	(SKETCH_002:Sk					Default Group	-
6		p125	0.5	0.5	in		Length	¥ Nµ	mber	(Extrude(5) End					Default Group	-
7		p186	.050	0.05	in		Length	▼ Nur	riber	(Chamfer(3) Cha					Default Group	-
3		p193	.015	0.015	in		Length	▼ Nur	riber	(Chamfer(9) Cha					Default Group	-

Presentation States

Functionally Named Views and States



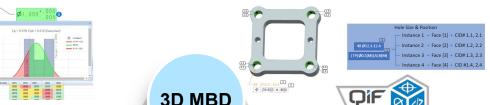
03-TOP


Model-Based Characteristics

Engineering authors complete BoC

Enabling a Digital Thread

- Single Source of Truth: Characterization is authored once in Eng definition
- Speed: Automation enabled by machine readable formats
- Quality: Software integration replaces manual transcription
- Traceability: Unique characteristic IDs persist in digital thread
- Interoperability: Characteristics are embedded in interop file format
- Consistency: Characteristic authored to industry std format


🖯 Info	rmation	Bill of Charac	cteristics [042a54c3-3	3330-4d2	5-ab51-0f6956	b8517c]								
ISIR		- t <u>⊽</u>		[/]	C	X,	X.	X_	D.C.	EQ.	900		ni	ni
	Report T	ype Re:	set Decolorize	Hide	Re-Balloon	Export	Import	Bind	HTML Report	3D HTML Report	PDF R	eport	Publish	Import
V	Tag	Saved View	Feature Name		Annotation Na	me	GD&T				(-)	1	(+)	DRF
V	↔ 1	01_TOP	TOP Opposite Planes 517		ad21		3,000 ±,005				005	3.000	.005	-
V	Ø 2.1	01_TOP	Cylinder 512		ad11	Ø,350 ±,010				010	.350	.010	-	
V	Ø 2.2	01_TOP	Cylinder 514		ad11		Ø.350 ±.010				010	.350	.010	-
V	Ø 2.3	01_TOP	Cylinder 513		ad11			Ø.350	±,010		010	.350	.010	-
V	Ø 2.4	01_TOP	Cylinder 515		ad11			Ø.350	±.010		010	.350	.010	-
V	ф 3.1	01_TOP	Cylinder 512		gp0							.015	A/B/C	
V	ф 3.2	01_TOP	Cylinder 514		gp0				MABO	7	-	-	.015	A/B/C
V	ф 3.3	01_TOP	Cylinder 513		gp0		⊕ Ø.015₩ A B C						.015	A/B/C
V	⊕ 3.4	01_TOP	Cylinder 515		qp0		•	Ø 0150	MABO	5	-	-	.015	A/B/C

Characteristic Accountability

Measurement Results

- Inspection results captured and linked to req's in QIF
- SPC and statistical analysis

2D

BOC

3D MBD

- 3D req's characterized, associated to features
- QIF MBD published for quality workflows

Generate FAIR

Complete set of requirements published to quality database

Characteristic

Accountability

Plan

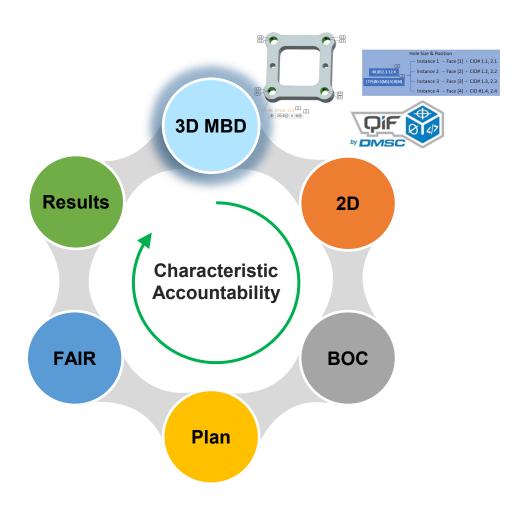
2D Req's

OCR characterizes 2D req's

Measurement Planning

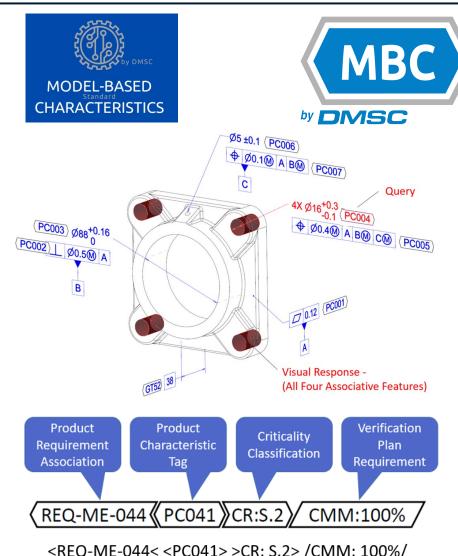
Results

FAIR


 QIF automates coordinate metrology

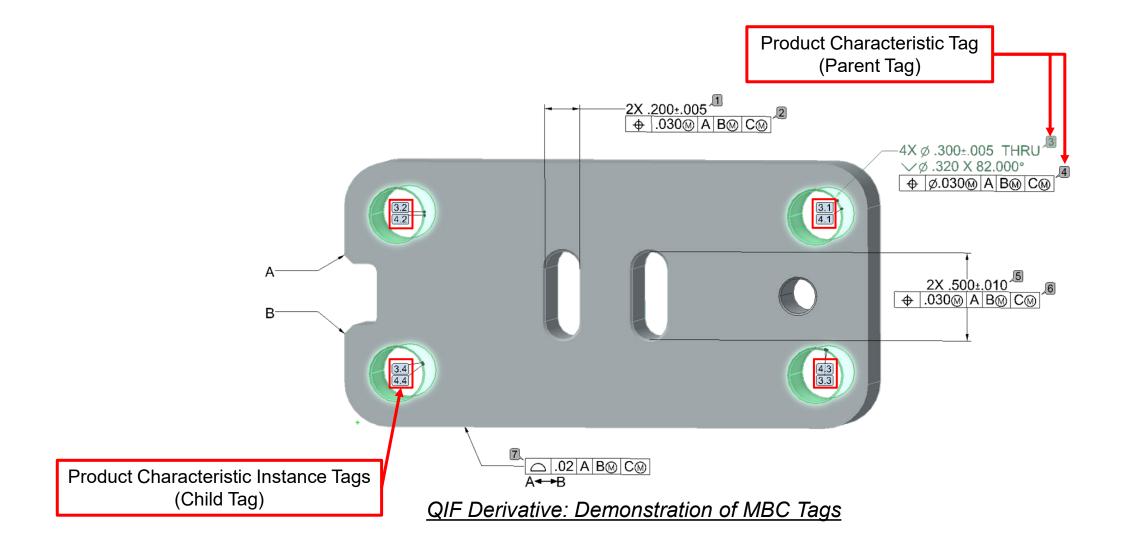
Complete BOC

- Unified 3D and 2D reg's
- 3D interactive viewer of measurement req's

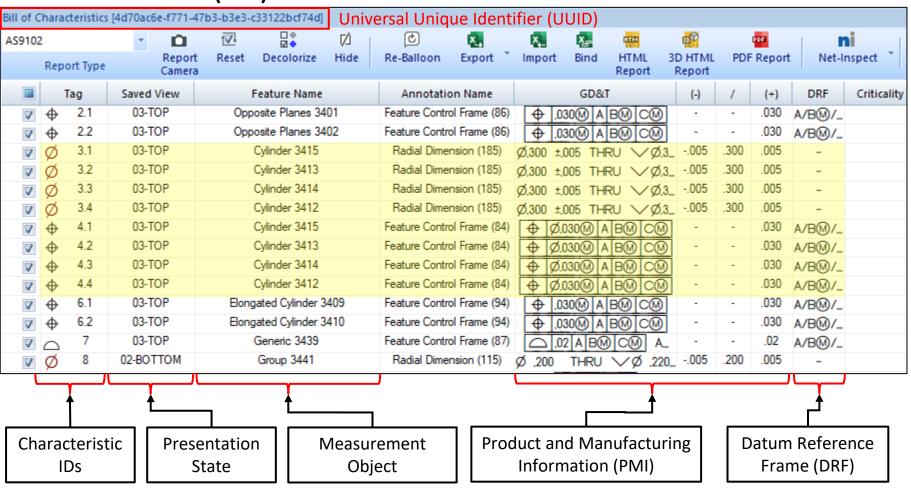

3D MBD

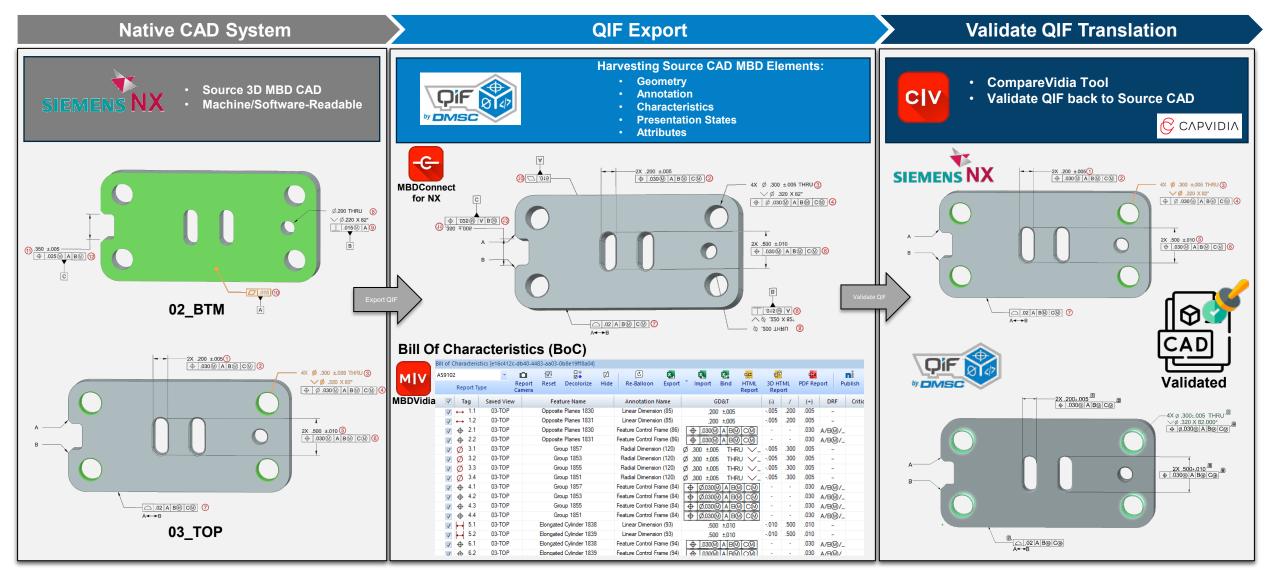
- 3D req's characterized, associated to features
- QIF MBD published for quality workflows

3D MBD – Characteristic Tag

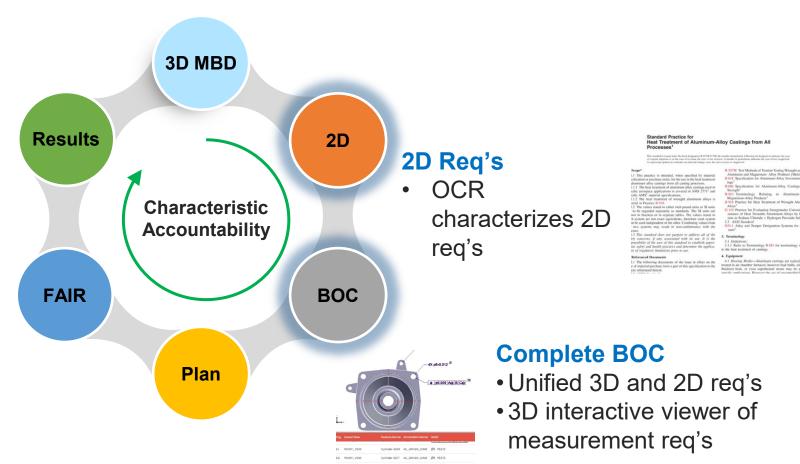

- DMSC's "Model-Based Characteristics" document
- Same organization that manages QIF std
- ~180 page document
- Identifies specific types and categories of product characteristics and optional augmentations
- Nomenclature, definitions, symbols, practice, and data structure for the representation and communication of Model-Based characteristics
- June 2023 voted to submit document for ANSI std. consideration

<REQ-ME-044< <PC041> >CR: S.2> /CMM: 100%/

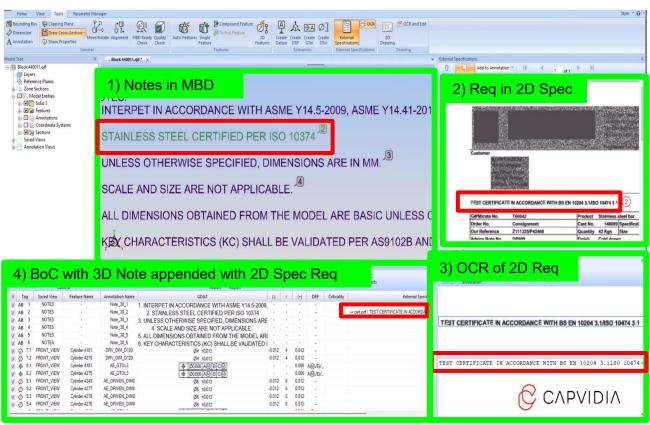

Product Characteristic Tags


Bill Of Characteristics

Bill of Characteristics (BoC)



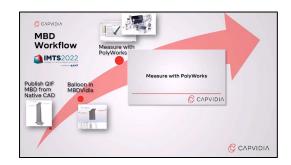
QIF Export - MBD Data Elements


2D PDF and Complete BoC

Example Workflow to a Complete BoC

- Example has PMI general note that references an ISO std req contained in a 2D spec
- 2. 2D spec characterized with software
- 3. OCR is used to pull text into software
- 4. 2D req is appended to 3D general note in BoC

Capvidia MBDVidia Software

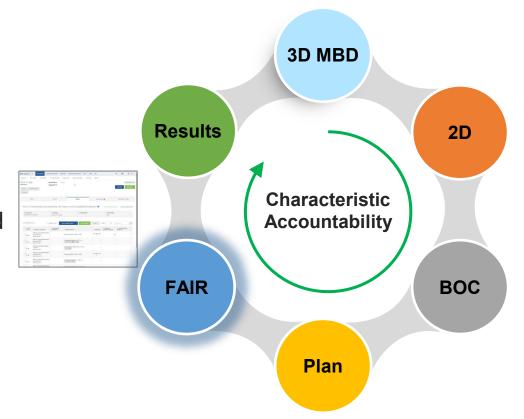


QIF – Measurement Planning

Video

QIF Derivative

Inspection Plan



Enabling a Digital Thread

Single Source of Truth, Speed, Quality, Traceability, Interoperability, Consistency

Generate FAIR

 Complete set of requirements published to quality database

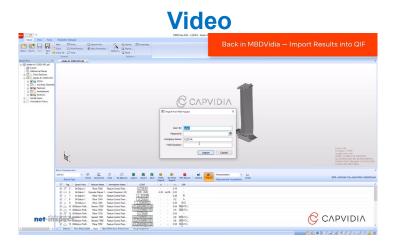
Video

QIF Derivative

FAIR Characteristic List

Enabling a Digital Thread

Single Source of Truth, Speed, Quality, Traceability, Interoperability, Consistency

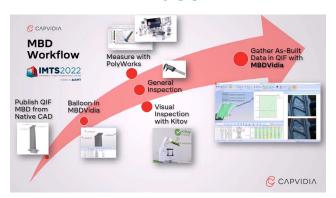

Measurement Results

- Inspection results captured and linked to req's in QIF
- SPC and statistical analysis

QIF – Measurement Results (Net-Inspect)

QIF Results

Measurement Analysis


Enabling a Digital Thread

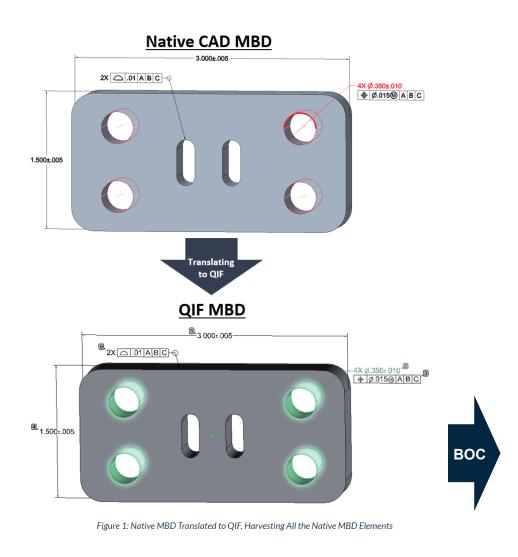
Single Source of Truth, Speed, Quality, Traceability, Interoperability, Consistency

QIF – Measurement Results (Excel)

Video

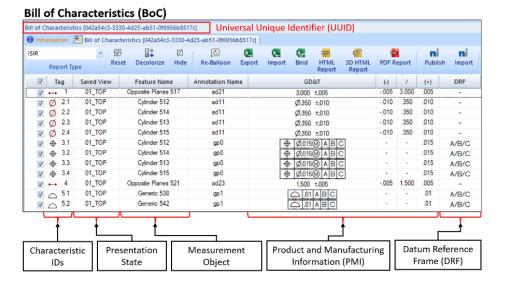
QIF Results

Measurement Analysis



Enabling a Digital Thread

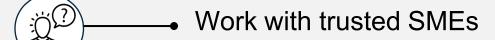
Single Source of Truth, Speed, Quality, Traceability, Interoperability, Consistency



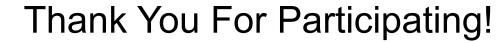
How QIF Can Improve Data Interoperability


Belcan Blog: <u>How QIF Can Improve</u> <u>Data Interoperability</u>




Starting your Transformational Journey

What Foundational Elements are Needed to Support a Digital Thread?



Mike Werkheiser
Director of MBE
860-299-6250
mwerkheiser@belcan.com

Evan Kessick
MBE Discipline Manager
269-491-1259
ekessick@belcan.com

